

The Wombat Forest Long-Term Ecosystem Research Site

First experience in Processing EC-Data

Nina Hinko-Najera

Stefan Arndt, Benedikt Fest, Stephen Livesley (University of Melbourne) Jason Beringer, Peter Isaac, Darren Hocking, Ian McHugh (Monash University)

MELBOURNE Location

Site Characteristics

- temperate dry sclerophyll Eucalypt forest
- > 3 dominant species:
 - E. obliqua (messmate stringybark)
 - E. rubida (candlebark gum)
 - E. radiata (narrow-leafed peppermint)
- soil: silty-clay overlying clay

Climate Characteristics:

- > cool temperate to Mediterranean
- > warm & dry summers
- cold & wet winters
- mean annual rainfall: ~ 650 mm

Objectives Wombat LTRS

- Greenhouse gas balance of a dry temperate sclerophyll forest & its strength as carbon sink/source
- Quantification of NEE, R_{eco}, GPP & estimate of NEP of the Wombat State Forest
- Quantification and contribution of soil CO₂ emissions to overall R_{eco}
- Quantification of non-CO₂ GHG emissions/uptake

THE UNIVERSITY OF

MELBOURNE

- seasonal, inter-daily, inter-annual variations
- > database carbon and water models

Sites – Overview & Equipment

Wombat LTRS

THE UNIVERSITY OF

MELBOURNE

🐯 MONASH University

- EC tower (35m)
 Net C Ecosystem Exchange (NEE)
- MEGA-chamber system soil derived greenhouse gases CO₂, CH₄ and N₂O
- automated measurements at high temporal resolution

3 Satellite sites

- in proximity of 500 to 800m to the main research site
- \succ soil GHG: CO₂, CH₄
- effects of drought on soil GHG
- monthly measurements
 (dynamic closed chamber system with FGGA)

Soil GHG MEGA-chamber system

Mobile Ecosystem Greenhouse Gas Analyser ' (MEGA) – chamber system:

THE UNIVERSITY OF

MELBOURNE

- > 6 automated soil respiration chambers
- Fourier Transform Infra Red (FTIR)spectrometer
- > mobile field laboratory
- automated remote area power

- system
- internet access

First experience in Processing EC-Data

EC-Data Processing Levels

- Real Time Monitoring Control: http://www.arts.monash.edu.au/ges/research/climate/wombat/index.php
- Data collection: data logger, CF-cards and downloads via modem (Monash University)
- > program: Python 2.7 (Enthought)
- > quality checks (L1-L3) with specific scripts from Peter Isaac
- Level 1 raw data spreadsheet from 30min data files: 'slow_rad', 'slow_flux', 'slow_met', 'slow_extras', 'slow_core'
- Level 2 Rejection of bad data (range checks, diagnostics CSAT, -7500, exclusion of dates/hours)
- Level 3 correction for 2D coordinate rotation, calculation of fluxes from covariances (Fc_wpl, Fe_wpl), calculation of net radiation, merge series Ta and Ah from CSAT and HMP45, WPL-correction

EC-Data 2010 and 2011

2010

days: 345

Level	values	%
L1	existing	83.72
L1	missing	16.28
L2	used	70.49
L2	rejected/missing	29.51
L2	rejected	13.23
L3	used	72.04
L3	rejected/missing	27.96
L3	rejected	0.00

2011

days: 150 (until May 2011)

Level	values	%
L1	existing	92.20
L1	missing	7.80
L2	used	77.47
L2	rejected/missing	22.53
L2	rejected	14.35
L3	used	82.48
L3	rejected/missing	17.52
L3	rejected	0.01

Lost Data 2010

THE UNIVERSITY OF

MELBOURNE

percentage of loss (%)

2010 L1-L2 soil

2010 L1-L2 CO_2 , Ah and Ta

THE UNIVERSITY OFcalibration of LI-7500MELBOURNECalibration of LI-7500

2010

'To Do' before:

submission of data to Ozflux/Tern:

- correct or retrieve data from Ts from June 2010 until Jan 2011
- correct calibration issues of LI-7500

thinking of gap-filling and partitioning of GPP and R_{eco}:

night-time CO₂ flux – issues with draining, compare Fc with Ws, Wd and get a outline about terrain (slopes, vegetation cover within range of tower)

- underestimation of time needed to analyse data
 handling with huge data amount
- ➤ run data through QC is not enough ⇒ evaluation of data manually is necessary
- knowledge of your site is essential
- real time data check is very useful to detect early errors
- 'processing of data' more frequently to detect errors and faults quickly
- quality of calibration of sensors important
- standardization of variable names in log-sheets

Thank you

for your attention!

THE UNIVERSITY OF MELBOURNE

© Copyright The University of Melbourne 2008

- > general aims:
 - a. spatial replication
 - b. impact of drought on forest C balance
- manual measurements of soil greenhouse gases CO₂ and CH₄, soil temperature and soil moisture on a monthly basis with a FGGAchamber system
- > partitioning of soil respiration in its component fluxes
 - 1. root respiration
 - 2. microbial respiration
 - microbial respiration of decomposing litter
 (dead leaves, twigs, fruits on the forest floor)
- each site comprises one control plot and

one rainfall reduced plot and one weather station

Rainfall reduction treatment

reduction of rainfall by 40% to intensify drought event

> 10 chambers per treatment within

the plot

total soil respiration

microbial respiration

total soil respiration without microbial respiration from decomposing litter

Fast Greenhouse Gas Analyser (FGGA) – chamber system

